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Analytic Sequential Weiss-Weinstein Bounds
Florian Xaver⇤, Peter Gerstoft, Gerald Matz, and Christoph F. Mecklenbräuker

Abstract—In this paper, we explore a sequential Bayesian

bound for state-space models focusing on hybrid continuous and

discrete random states. We provide an analytic recursion for the

sequential Weiss-Weinstein (SWW) bound for linear state-space

models with solutions for Gaussian, uniform, and exponential

distributions as derived, as well as for a combination of these.

We compare the SWW bound for discretized states with the

corresponding bound for the continuous states. The SWW bound

is contrasted with the sequential Cramér-Rao bound for Gaussian

distributions. Practical issues of SWW bounds are discussed and

numerical simulation results provide insights into their behavior.

This is a revision (July 2, 2016) of the uniform and exponential

sections.

Index Terms—Bayesian estimation, analytic sequential Weiss-

Weinstein lower bound, uniform noise, exponential family, hybrid

state estimation problems

I. INTRODUCTION

Recent investigations in the area of joint field and state
estimation can be categorized as deterministic [1]–[3] and
stochastic [4]–[8] approaches. In this paper, we follow a
stochastic approach in a Bayesian framework. The study of
lower bounds on the mean-square error matrix of a Bayesian
estimator [9]–[12] entails various bounds [13]–[16].

We are interested in a Bayesian lower bound for state
estimators which are applicable jointly to discrete and contin-
uous random state variables. Additionally, the bound shall
support the corresponding probability densities with finite
support. Discretization of physical models described by partial
differential equations [4], [5] or by static formulations induce
discretized states [17]. These models often feature loosely
coupled state variables. Due to the loose coupling, these models
are interpreted as reduced-order models. Sequential Cramér-
Rao (SCR) bounds were developed [6], [18] for continuous
random states. It turns out that the regularity conditions for the
applicability of the Bayesian Cramér-Rao (CR) bound are too
restrictive for discrete states [19]. We seek bounds with relaxed
regularity conditions which are applicable to discrete state
variables. This requirement guides us to the Weiss-Weinstein
(WW) bound [13], [15], [20], [21]. The temporal evolution
of states is described by a state-space model and motivates
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the extension of the WW bound to a sequential formulation
(SWW) [22], [23].

Apart from the underlying theory of SWW bounds [23], [24]
and the application to fault-prone systems [25], [26], we are
not aware of any explicit analytic results for specific probability
densities nor their rigorous derivations.

This paper is organized as follows. In Section II, the use of
the WW bound is introduced leading to the general formulation
of the SWW bound. In addition to the referenced literature,
we motivate the use of the SWW bound for hybrid contin-
uous/discrete distributions and densities with finite support.
We provide a general description of the bound utilizing the
expectation operator. Furthermore, we emphasize foundations,
which we need for the proofs in the subsequent sections. After
definitions of discretized and hybrid models in Section III, key
contributions of our paper follow:

• We provide an analytic SWW recursion for a linear state-
space model (Sec. IV).

• The SWW bound for Gaussian distributions (Section
IV), uniform distributions (Section V), and exponential
distributions (Section VI) is presented.

• The SWW bound for discrete models, where the discrete
states stem from discretization of continuous states (Sec-
tions III to VI).

• Practical issues are addressed in Section VII: special prior
distributions, the choice of SWW’s test point matrices,
the computational effort, and partly deterministic noise.

• The final example (Section VIII) demonstrates the SWW
bound for a three-dimensional state-space model for
different probability distributions and compares them to a
Bayesian filter (Kalman or particle filter).

Several lemmas are summarized and proved in the Appen-
dices.

II. BAYESIAN LOWER BOUNDS

This section is inspired by [13], [23]–[26] and introduces
the sequential SWW. We address hybrid discrete/continuous
state vectors and emphasize properties for subsequent sections.

A. Preliminaries on probability theory

Let us assume a probability space (

N

,B, P
x

) with the
sample space N , the Borel algebra B and the measure P

x

:

B ! [0, 1].
The expectation of a function g(x) is defined using the

probability measure P

x

(B) = P (x 2 B) by

E

x

(g(x)) :=

Z

N

g(x)dP
x

(x) . (1)
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We assume a probability measure consisting of a continuous
P

c

x

and a discrete P

d

x

part [27], [28], i.e.,

P

x

= c

1

P

c

x

+ c

2

P

d

x

, (2)

with c

1

+c

2

= 1, c

1

2 [0, 1]. Inserting (2) into (1), the latter one
splits into one integral with Lebesgue measure �

c

([a

1

, b

1

]⇥
· · · ⇥ [a

N

, b

N

]) = (b

1

� a

1

) · · · (b
N

� a

N

) and another one
with counting measure �

d

C(A) =

P

`2C `

(A) where C 2 B
and is the indicator function. We arrive at

Z

N

c

1

g(x)f
x

(x)dx+

X

x2C
c

2

g(x)p
x

(x) (3)

with the probability density function (PDF) f

x

(x) =

dP

c

x

(x)/d�c

(x) and the probability mass function (PMF)
p

x

(x) = dP

d

x

(x)/d�d

C(x).

B. Bayesian bounds

In the following, we denote a hybrid continuous/discrete
probability density by v

x

(x) = c

1

f

x

(x) + c

2

p

x

(x), c
1

2
[0, 1], c

1

+ c

2

= 1 and call it simply probability density (PD).
Especially when no measure is specified this notation allows
the consideration of continuous and discrete random variables.
We use the notation d�

x

whenever we assume the existence
of a density for the random variable x. To simplify notation,
we use E (·) := E

x,y

(·), f(x) := f

x

(x), p(x) := p

x

(x) and
v(x) :

= v

x

(x). In the sequel, x is the N -dimensional test
point vector to be inferred from the perturbed measurements

y = C(x) + v , x ⇠ v(x) , v ⇠ v(v) , (4)

with a mapping C and measurement noise v. The resulting
estimation error of estimate ˆx is defined by

" :

=

ˆx(y)� x . (5)

The Bayesian lower bound is a lower bound for the mean-square
error (MSE) of any Bayesian estimator. With g(x,y) being a
real-valued measurable function satisfying E

x

(g(x,y)) = 0,
the mean-square error matrix [13] is lower bounded by

E

�

""T
�

< E

�

ygT

�

E

�

ggT

��1

E

�

ygT

�

T

(6)

where E

�

ggT

�

is a non-singular matrix. The elements of all
matrix must be finite. The relational operator < indicates that
the difference between left and right hand sides is a positive
semi-definite matrix. The function g(x,y) is a sensitivity
function termed score which defines specific Bayesian bounds.

1) Cramér-Rao bound and Bobrovsky-Zakai bound: For
the Cramér-Rao lower bound (CR) the score of a continuous
random parameter x is defined by

g(x,y) = @

x

ln f(x,y) =
@

x

v(x,y)

v(x,y)
. (7)

with the assumption that lim
[x]

`

!±1[x]
`

f(x|y) = 0 for all
` = 1, · · · , N and y. The `th element of x is denoted by [x]

`

.
Furthermore, the first and second derivatives of f(x,y) with
respect to x must exist and be absolutely integrable. Inserting
(7) into (6) gives [13]

E

�

""T
�

< E

�

g(x,y)g(x,y)T
��1

:

= J�1 (8)

with J being the Bayesian information matrix.
For discrete x, the @

x

in (7) is approximated by the
difference quotient

1

�

h

x

v(x) :=

✓

1

�

h1
x1v(x), · · · ,

1

�

h

N

x

N

v(x)

◆

T

(9)

where
1

�

h

`

x

`

v(x) :

= (v(x + h

`

e
`

) � v(x))/h
`

, and only

the `

th elements of the unit vector e
`

is unity. Variables
h

`

specify the sample period if the densities are discrete
approximations of continuous ones. This allows the use of
hybrid continuous/discrete densities v(x

,

y). One alternative to
the score (7) is

@

x

ln v(x,y) ⇡ 1

v(x,y)

1

�

h

x

v(x,y) = g(x,y) (10)

with h = [h

1

, · · · , h
N

]

T 2 N . This score is a special case
of Bobrovsky and Zakai’s [29] (BZ) choice of score,

g

u

= L(x+ h
u

,x,y)� 1 u = 1, · · · , N , (11)

Here, L is the likelihood ratio

L(x
1

,x
2

,y) :=
v(x

1

,y)

v(x
2

,y)
=

v(x
1

,y)

ṽ(x
1

,y)
=

dP

(1)

x,y

dP

(2)

x,y

(12)

which is equivalent to the Radon-Nikodym derivative of
probability measure P

(1) with respect to P

(2). The BZ lower
bound is [29]

E

�

""T
�

< HJ�1HT (13)

where

[J ]
ab

:

= E (L(x+ h
a

,x,y)L(x+ h
b

,x,y))� 1 , (14)
H :

= [h
1

, · · · ,h
N

] , a, b = 1, · · ·N . (15)

The specific choices of the test points h
a

and h
b

influence the
lower bound on the mean-square error of elements a and b.

The Radon-Nikodym derivative (12) exists if and only if
P

(1) is absolutely continuous with respect to P

(2). This means
that the support of ṽ is part of the support of v. This is not
the case for truncated densities such as the uniform density.
Thus a more general bound is necessary.

2) Weiss-Weinstein bound: The Weiss-Weinstein (WW)
lower bound is a generalization of the BZ bound. In the sequel,
we use the score

g

u

(x,y) =
p

L(x+ h
u

,x,y)�
p

L(x� h
u

,x,y) (16)

where u = 1, · · · , N (cf. [13], [20], [30] with s

1

= s

2

=

1

/2).
Inserting (16) into (6), the WW bound is given by

E

�

""T
�

< HJ�1HT (17)

where

[J ]
ab

:

=

e

µ(h

a

,�h

b

)

+ e

µ(�h

a

,h

b

) � e

µ(h

a

,h

b

) � e

µ(�h

a

,�h

b

)

e

µ(h

a

,0)
e

µ(h

b

,0)
,

(18)

with the negative non-metric Bayesian Bhattacharyya distance
(BD) between v(x+ h

a

,y) and v(x� h
b

,y), [31], [32],

µ(h
a

,h
b

) = lnE

 

p

v(x+ h
a

,y)v(x� h
b

,y)

v(x,y)

!

. (19)
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The corresponding Bayesian Bhattacharyya coefficient

⇢ = exp(µ(h
a

,h
b

)) (20)

lies between zero and unity. The more uniform the density
v(x,y) is, the closer is ⇢ to unity. The more general WW score
in [13] is linked to the more general ↵-Chernoff divergence and
its coefficient [33]. In the following, the symmetrized Bayesian
Bhattacharyya coefficient is

% = exp(µ(�h
a

,�h
b

)) + exp(µ(�h
a

,�h
b

)) . (21)

C. Sequential Weiss-Weinstein bound
The sequential Weiss-Weinstein bound is the extension of

the WW bound to a process x = {x
k

} with discrete time
k 2 [22], [23]. The evolution over time is described by a
state-space model

x
k+1

= �(x
k

) +w
k

, w
k

⇠ v(w
k

) , (22a)
y
k

= C(x
k

) + v
k

, v
k

⇠ v(v
k

) , (22b)

with a mapping � and state noise w
k

. We first consider the
joint WW bound for the prior and history of states x

0:k

=

[x
0

, · · · ,x
k

]

T for deriving a recursive algorithm to iteratively
compute the WW bound of every time step k. A block-diagonal
matrix defines the kN ⇥ kN test point matrix

H
k

:

=

2

6

4

H
0

. . .
H

k

3

7

5

= [h
0

, · · · ,h
kN

] . (23)

The matrix H
`

= [h
`,1

, · · · ,h
`,N

] corresponds to H in (17)
at time `. Using the error vector "

0:k

=

ˆx
0:k

(y
1:k

)�x
0:k

, the
mean-square error matrix

E

�

"
0:k

"T
0:k

�

< H
k

J�1

k

HT

k

. (24)

The overall matrix J
k

can be partitioned into

J
k

=

2

4

A
k�1

0

B01

k

0 B10

k

B11

k

3

5

. (25)

with A
k�1

= blockdiag (A
0

, · · · ,A
k�1

) and 0 is the zero-
matrix of size (k � 1)N ⇥ (k � 1)N . Matrix A

k�1

captures
information from the times [0, k � 1], B11

k

the time k and
B01

k

= (B10

k

)

T the transition between them. The 0 matrices
in (25) are due to the Markovian property, i.e.

v(x
0:k

,y
1:k

) = v(y
k

|x
k

)v(x
k

|x
k�1

)v(x
0:k�1

,y
1:k�1

) .

For the time k = 0, we have B11

0

= J
0

= J
0

, i.e. the bound
of the prior.

In the remainder of this section, we derive a recursive update
for the WW bound at time k, i.e.

E

�

"
k

"T
k

�

< W
k

:

= H
k

J�1

k

HT

k

. (26)

In addition to (25), we consider the time interval [0, k + 1]

and partition the overall matrix

J
k+1

=

2

6

6

4

A
k�1

0

D01

k+1

0
0

0

0
D10

k+1

0
D11

k+1

D21

k+1

D12

k+1

D22

k+1

3

7

7

5

. (27)

Matrix D11

k+1

captures the time k, D22

k+1

the time k + 1 and
the others the transition between the time instances. Using the
Schur complement, the right lowest part of J�1

k+1

is given by
the inverse of

J
k+1

=D22

k+1

�

2

4

0
0

D21

k+1

3

5

T

2

4

A
k�1

0

D01

k

0 D10

k

D11

k

3

5

�1

2

4

0
0

D12

k+1

3

5

=D22

k+1

�D21

k+1

⇣

D11

k+1

�D10

k+1

A�1

k�1

D01

k+1

| {z }

⌘A

k

⌘�1

D12

k+1

.

(28)

We compare it with

J
k

= D22

k

�D21

k

A�1

k�1

D12

k

, (29)

The sequential update becomes

A
k

= D11

k+1

�D10

k+1

A�1

k�1

D01

k+1

, (30a)
J

k+1

= D22

k+1

�D21

k+1

A�1

k

D12

k+1

, (30b)

for all k = 0, 1, · · · . Matrix A�1

�1

:= 0 whereas J�1

0

is set to
the co-variance of the prior. According to (19) and (27),

[Dij

k+1

]

mn

=

e

µ1
+ e

µ

0
1 � e

µ2 � e

µ

0
2

e

µ3
e

µ4
, i, j 2{0, 1, 2} ,

(30c)

with

µ

1

= µ(h
(k�2+i)N+m

,�h
(k�2+j)N+n

) , (30d)
µ

0
1

= µ(�h
(k�2+i)N+m

,h
(k�2+j)N+n

) , (30e)
µ

2

= µ(h
(k�2+i)N+m

,h
(k�2+j)N+n

) , (30f)
µ

0
2

= µ(�h
(k�2+i)N+m

,�h
(k�2+j)N+n

) , (30g)
µ

3

= µ(h
(k�2+i)N+m

,0) , (30h)
µ

4

= µ(h
(k�2+j)N+n

,0) , (30i)

and (30j) on Page 4 with

v(y
0

|x
0

)v(x
0

|x�1

)

:

= v(y
0

)v(x
0

) . (30k)

In contrast to [22], we use Expectation (1) in (30j) and this
entails an additional density in the denominator.

Inspecting (30j) and (27) leads to

Proposition 1. Given a time-invariant state-space model with
time-invariant noise distributions and sub-matrices H

k

:

= H
0

.
Then D10

k

= D21

k

and D01

k

= D12

k

= (D21

k

)

T for k > 2.

D. Linear models

We condense, reformulate, and expand Assumption 1, Class
1, and Lemma 5 of [22]. This enables Sec. III to draw on
the following lemmas. We further utilize expectation (1) and
finally approach linear models.

Lemma 2. If the expectation in (30j) can be factored into
independent expectations, i.e.

µ(h
a

,h
b

) = ln(E

0

· · ·E
k+1

) (31)
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µ(ha,hb) = lnE

(Qk+1
`=0 v(y`|x` + h`,a)

1/2v(x` + h`,a|x`�1 + h`�1,a)
1/2v(y`|x` � h`,b)

1/2v(x` � h`,b|x`�1 � h`�1,b)
1/2

v(x0:k+1,y1:k+1)

)
(30j)

where

E

`

:

= E

n

v(y
`

|x
`

+ h
`,a

)

1
/2
v(y

`

|x
`

� h
`,b

)

1
/2

v(y
`

|x
`

)

⇥ v(x
`

+ h
`,a

|x
`�1

+ h
`�1,a

)

1
/2

v(x
`

|x
`�1

)

⇥ v(x
`

� h
`,b

|x
`�1

� h
`�1,b

)

1
/2

o

(32)

then

D01

k+1

= (D10

k+1

)

T

= B01

k

= (B10

k

)

T

. (33)

Proof: Let us focus on (30j). We first recast (30j) as
(34) and omit all zero vectors h

`,a

and h
`,b

. To compute
B

k

, Part (34a) and (34b) are separable. Part (34a) is an
expectation E

k+1

(h
k,a

) = E

k+1

(0) = 1. To compute D10

k+1

and D01

k+1

we assume independent expectations (31). Thus,
Part (34a) and Part (34b) are also separable. Part (34a) is an
expectation E

k+1

(h
k,a

). For µ(0,h
b

) in (30c), the expectation
E

k+1

(h
k,a

) = E

k+1

(0) = 1 . For µ(h
a

,�h
b

), µ(h
a

,h
b

), and
µ(h

a

,0), the expectations E

k+1

(h
k,a

) are equal. Thus the
E

k+1

(h
k,a

) cancels in (30c). What raises is identical to B01

k

.

Lemma 3 (Linear transition equation). Given a linear state-
transition equation

x
k+1

= �x
k

+w
k

, w
k

⇠ v(w
k

) . (35)

Then the conditions for (31) are fulfilled.

Proof: Integrating over the transition densities (as in (1))

Z

v(x
`

+ h
`,a

|x
`�1

+ h
`�1,a

)

1
/2

v(x
`

|x
`�1

)

⇥ v(x
`

� h
`,b

|x
`�1

� h
`�1,b

)

1
/2
dP

x

`

|x
`�1

=

Z

v

w

`

(w
`

+ h
`,a

��
`

h
`�1,a

)

1
/2

v

w

`

(w
`

)

⇥ v

w

`

(w
`

� h
`,b

+�
`

h
`�1,b

)

1
/2
dP

w

`

(36)

with w
`

= x
`

��x
`�1

and the conditional probability measure
P

x

`

|x
`�1

. Observe that (36) is independent of time `� 1.
Additionally to the transition equation in Lemma 3, we

address the measurement equation.

Corollary 4 (Linear measurement equation). Given the linear
transition equation (35) and the measurement equation

y
k

= C
k

x
k

+ v
k

, v
k

⇠ v(v
k

) . (37)

Let the state and measurement noise be independent.
Then

µ(h
a

,h
b

) = ln(E

0

· · ·E
k+1

E

0
0

· · ·E0
k+1

) , (38)

with

E

`

:

= E

n

v(x
`

+ h
`,a

|x
`�1

+ h
`�1,a

)

1
/2

v(x
`

|x
`�1

)

⇥ v(x
`

� h
`,b

|x
`�1

� h
`�1,b

)

1
/2

o

, (39a)

E

0
`

:

= E

n

v(y
`

|x
`

+ h
`,a

)

1
/2
v(y

`

|x
`

� h
`,b

)

1
/2

v(y
`

|x
`

)

o

, (39b)

i.e. the expectation over x
0:k+1

,y
1:k+1

splits into expectations
w.r.t. x

`

,y
`

.

Proof: The factorization corresponding to the transition
densities have been proved with Lemma 2. Dually, the
factorization of the integrals concerning the measurement noise
are proved in the following.

Due to the additivity of the measurement function,
Z

v(y
`

|x
`

+ h
`,a

)

1
/2
v(y

`

|x
`

� h
`,b

)

1
/2

v(y
`

|x
`

)

dP

y

`

|x
`

=

Z

v

v

`

(v
`

�C
`

h
`,a

)

1
/2
v

v

`

(v
`

+C
`

h
`,b

)

1
/2

v

v

`

(v
`

)

dP

v

`

(40)

with v
`

= y
`

�C
k

x
`

.
Due to the independence of v

`

and w
`

and their indepen-
dence from time ` � 1, (34) is separable into factors due to
innovation and measurement noise.

Next we assume independence between continuous and
discrete random sub-vectors of the innovation noise vector,
say

v(wc

k

,wd

k

) = f(wc

k

)p(wd

k

) . (41)

Corollary 5. With (35), (37), and (41), Equation (38) factor-
izes further into

µ(h
a

,h
b

) = ln(E

c

0

· · ·Ec

k+1

E

d

0

· · ·Ed

k+1

E

0
0

· · ·E0
k+1

) , (42)

where E

c

· denotes the expectation over continuous probability
distributions whereas E

d

· denotes the expectation over discrete
ones.

In the remainder of our paper, we compute the expectations
in (42) for different noise and priors.

E. Sequential WW bound for the linear transition model

Recursion (30) simplifies if the transition function � = �
is linear. Applying the matrix inversion lemma to (25) gives

J
k

= B11

k

�B10

k

A�1

k

B01

k

. (43)

Substitution of (43) and (33) into (28) leads to

J
k+1

= D22

k+1

�D21

k+1

(D11

k+1

+ J
k

�B11

k

)

�1D12

k+1

(44)

with B11

0

= J
0

and B11

k

= D22

k

, k = 1, 2, · · · [22].
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µ(h
a

,h
b

) = ln

E

n

v(x

k+1|xk

+h

k,a

)

1
/2

v(x

k+1|xk

)

1
/2

v(x

k+1|xk

)

⇥ v(y

k

|x
k

+h

k,a

)

1
/2

v(y

k

|x
k

)

1
/2

v(x

k

+h

k,a

|x
k�1)

1
/2

v(x

k

|x
k�1�h

k�1,b)
1
/2

v(y

k

|x
k

)v(x

k

|x
k�1)

⇥ v(y

k�1|xk�1)
1
/2

v(y

k�1|xk�1�h

k�1,b)
1
/2

v(x

k�1|xk�2)
1
/2

v(x

k�1�h

k�1,b|xk�2)
1
/2

v(y

k�1|xk�1)v(xk�1|xk�2)

v(x0:k�2,y1:k�2)

v(x0:k�2,y1:k�2)

o

(34a)

(34b)

III. MODELS

In the remainder, we use Corollary 4 and 5 to derive analytic
SWW bounds for different noise and prior. The solutions
are general in the sense that the structure is the same for
different distributions. Furthermore, we investigate the SWW
bound for the case of states and noise quantized uniformly
from continuous distributions. We prove that SWW bounds
of continuous and uniformly quantized states are equal for
suitable choices of H

k

. We assume uniform quantization with
step size �

x

, i.e. xd

k

/�

x

2 and the probability densities
are sampled and normalized.

Similar to the continuous linear state-space model (35) and
(37), we define the discrete model

xd

k+1

= �xd

k

+wd

k

, xd

k

2 N

, (45a)
y
k

= Cxd

k

+ v
k

, (45b)

wd

k

⇠ 1

c

00 fwk

(wd

k

) , xd

0

⇠ 1

c

000 fx0(x
d

0

) , (45c)

and the hybrid model

xc

k+1

= �cxc

k

+�cdxd

k

+wc

k

, xc

k

2 N

c

,

xd

k+1

= �dxd

k

+wd

k

, xd

k

2 N

d

,

y
k

= Cdxc

k

+Cdxd

k

+ v
k

, (46)
wc

k

⇠ f(wc

k

) ,xc

0

⇠ f(xc

k

) , v
k

⇠f

v

k

(v
k

) ,

wd

k

⇠ 1

c

00 fw
c
k

(wd

k

) , xd

0

⇠ 1

c

000 fx
c
0
(xd

0

) ,

where f

x

c
0
, f

w

c
k

and f

v

k

are PDFs of interest. Factors c

00 and
c

000 normalize the densities. Variable N = N

c

+ N

d is the
number of states.

IV. ANALYTIC SOLUTION FOR GAUSSIAN NOISE / PRIOR

In this section we derive lower bounds for Gaussian [34]
noise and priors N {m

x

k

,C
x

k

}, i.e.

v(x
k

)

:

=

1

(2⇡)

N

/2
(detC

x

k

)

1
/2
e

� 1
2kxk

�m

x

k

k2

C

�1
x

k

. (47)

with the mean m
x

k

, the covariance matrix C
x

k

, and the
weighted norm khk

C

�1
x

:

= (hTC�1

x

h)1/2. For this case, we
use the Bayesian Bhattacharyya coefficient (20)

⇢

G

x

(h) := e

� 1
8khk2

C

�1
x

. (48)

For discretized Gaussian densities, h/�
x

2 . We make
extensive use of Lemmas formulated in the Appendix A.

Theorem 6 (SWW bound / Gaussian distributions). Consider
a linear continuous, discrete, or hybrid state-space model. Let
the prior, the innovation noise, and the likelihood function be
Gaussian and statistically independent.

Then the SWW lower bound (26) for k 2 is computed
by (44) with (51) on Page 6 with ⇢(h) :

= ⇢

G

(h), which
corresponds to

[D11

k+1

]

a,b

= 4 sinh



1

4

hT

k,a

⇣

�TC�1

w

k

�

+ CTC�1

v

k

C +C�1

w

k�1

⌘

h
k,b

i

, (49a)

[D12

k+1

]

a,b

= �4 sinh



1

4

hT

k,a

�TC�1

w

k

h
k+1,b

�

= [D21

k+1

]

b,a

,

(49b)

[D22

k+1

]

a,b

= 4 sinh



1

4

hT

k+1,a

⇣

CTC�1

v

k+1
C +C�1

w

k

⌘

h
k+1,b

�

.

(49c)

For the initial k = 0, matrix D11

1

for (44) is given by (52)
with ⇢

x0(h) := ⇢

G

x0
(h), i.e.

[D11

1

]

a,b

= 4 sinh



1

4

hT

0,a

⇣

�TC�1

w0
�+C�1

x0

⌘

h
0,b

�

. (50)

Proof: First, the semi-invariant BD (30c) is re-cast into
(30j). Observe that due to symmetry, µ0

1

= µ

1

and µ

0
2

= µ

2

.
According to (23), h

`,a

= 0 if a < `N and a > (` + 1)N .
Thus we may remove them from (30j). Due to linearity we
invoke Corollary 4. We apply successively Lemmas 14, 15,
and 16. Together with (48), we get the analytic solution of the
BD. Inserting this four-times into (30c) gives us one element
of D12

k+1

.
Further details for k > 0 are given in (53) on Page 6.

There the BD for the elements of D12

k+1

is derived. From the
beginning we consider the existence of a PD, either PDF or
PMF. This gives the first two lines in (53). Finally, we insert
the last line four times into (30c).

For k = 0 we use the fact that v(y
0

|x
0

)

:

= v

y0
(y

0

), and
v(x

0

|x�1

)

:

= v(x
0

). The main difference to k > 0 is the
equality

Z

v

x0(x0

+ h
0,a

)

1
/2
v

x0(x0

� h
0,b

)

1
/2
d�

x0

= ⇢

G

x0
(h

0,a

+ h
0,b

) . (54)

Inserting (48) into (51) gives (49).

Observe that the hybrid and discretized models assume that
c

1

, c

2

2 {0, 1} in (2), i.e. the densities are either continuous
or discrete. For hybrid densities with c

1

, c

2

2 (0, 1) and due
to (3), the integrals split into discrete and continuous parts.

In the next sections, we observe that the structure of (44),
(51) and (52) is a special case of that for densities with a
support that is a subset of . Hence, (51) is discussed in
detail.
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⇥

D11

k+1

⇤

a,b

= 2

�

⇢

w

k

(�h
k,a

��h
k,b

)⇢

v

k

(Ch
k,a

�Ch
k,b

)⇢

w

k�1(hk,a

� h
k,b

)

� ⇢

w

k

(�h
k,a

+�h
k,b

)⇢

v

k

(Ch
k,a

+Ch
k,b

)⇢

w

k�1(hk,a

+ h
k,b

)

�

/

�

⇢

w

k

(�h
k,a

)⇢

v

k

(Ch
k,a

)⇢

w

k�1(hk,a

)⇢

w

k

(�h
k,b

)⇢

v

k

(Ch
k,b

)⇢

w

k�1(hk,b

)

�

⇥

D12

k+1

⇤

a,b

= [D21

k+1

]

b,a

= 2

⇢

w

k

(�h
k,a

+ h
k+1,b

)� ⇢

w

k

(�h
k,a

� h
k+1,b

)

⇢

w

k

(�h
k,a

)⇢

w

k

(h
k+1,b

)

⇥

D22

k+1

⇤

a,b

= 2

�

⇢

v

k+1(Ch
k+1,a

�Ch
k+1,b

)⇢

w

k

(h
k+1,a

� h
k+1,b

)

� ⇢

v

k+1(Ch
k+1,a

+Ch
k+1,b

)⇢

w

k

(h
k+1,a

+ h
k+1,b

)

�

/

�

⇢

v

k+1(Ch
k+1,a

)⇢

w

k

(h
k+1,a

)⇢

v

k+1(Ch
k+1,b

)⇢

w

k

(h
k+1,b

)

�

(51)

[D11

1

]

a,b

= 2

⇢

w0(�h
0,a

��h
0,b

)⇢

x0(h0,a

� h
0,b

)� ⇢

w0(�h
0,a

+�h
0,b

)⇢

x0(h0,a

+ h
0,b

)

⇢

w0(�h
0,a

)⇢

x0(h0,a

)⇢

w0(�h
0,b

)⇢

x0(h0,b

)

(52)

D12

k+1

: µ(h
a

,h
b

) = ln

ZZ

f(y
k+1

|x
k+1

)

1
/2
f(x

k+1

|x
k

+ h
k,a

)

1
/2
f(y

k

|x
k

+ h
k,a

)

1
/2
f(x

k

+ h
k,a

|x
k�1

)

1
/2

⇥ f(y
k+1

|x
k+1

� h
k+1,b

)

1
/2
f(x

k+1

� h
k+1,b

|x
x

)

1
/2
f(y

k

|x
k

)

1
/2
f(x

k

|x
k�1

)

1
/2
d�

x

k:k+1d�y

k:k+1

Corollary 4
= ln

ZZZ

f

v

k+1(yk+1

�Cx
k+1

)

1
/2
f

v

k+1(yk+1

�C(x
k+1

� h
k+1,b

))

1
/2
d�

y

k+1

⇥ f

w

k

(x
k+1

��(x
k

+ h
k,a

))

1
/2
f

w

k

(x
k+1

� h
k+1,b

��x
k

)

1
/2
d�

x

k+1

⇥ f

v

k

(y
k

�C(x
k

+ h
k,a

))

1
/2
f

v

k

(y
k

�Cx
k

)

1
/2
d�

y

k

⇥ f

w

k�1(xk

+ h
k,a

��x
k�1

)

1
/2
f

w

k�1(xk

��x
k�1

)

1
/2
d�

x

k

Lemma 14 & 16
= ln ⇢

v

k+1(Ch
k+1,b

)⇢

w

k

(�h
k,a

� h
k+1,b

)⇢

v

k

(Ch
k,a

)⇢

w

k�1(hk,a

) (53)

Let us compare ⇢

G with (8) and (60) in [32], where we set
p

1

(x) to Gaussian N {0,C
x

} and p

2

(x) to N {h,C
x

}. This
shows that Function ⇢

G is the Bhattacharyya coefficient ⇢ 2
[0, 1]. In (51), ⇢ quantifies the non-constancy of the densities.
The sharper a density is, the lower ⇢ is.

We observe that the structure of (51) stems from (30c).
Matrix D11

k+1

reflects the influence of innovation and measure-
ment noise at time k on k + 1. Therefore, transition matrix �
and measurement matrix C arise. Matrix D12

k+1

= (D21

k+1

)

T

addresses the transition between k and k + 1. Thus, it is
independent of the measurements and there is no function ⇢

v

k

.
Matrix D22

k+1

addresses only time k + 1. The structure is the
same as of D11

k+1

except that no ⇢

w

k+1 occurs due to causality.
For Gaussian densities (51) becomes (49). For small h-

vectors, sinh(x) ⇡ x. Thus we get

[D22

k+1

]

a,b

= hT

k+1,a

⇣

CTC�1

v

k+1
C +C�1

w

k

⌘

h
k+1,b

. (55a)

It represents the influence of noise on the SWW bound at time
k + 1, hence vectors h

k+1,a

and h
k+1,b

affect the bound due
to measurement noise at k + 1 and transition noise at k (cf.
(35)). The transition between k and k + 1 is represented by

[D12

k+1

]

a,b

= �hT

k,a

�TC�1

w

k

h
k+1,b

= [D21

k+1

]

b,a

(55b)

and hence the bound is affected by transition noise at k, i.e.
�h

k,a

and h
k+1,b

perturb the matrix. Eventually,

[D11

k+1

]

a,b

= hT

k,a

⇣

�TC�1

w

k

�+CTC�1

v

k

C +C�1

w

k�1

⌘

h
k,b

,

(55c)

represents the noise at time k affecting time k+1. This includes
measurement noise at k and transition noise at k � 1 and k.

Note that the higher the variance of a Gaussian distribution,
the flatter its density. In (55), the higher the variances, the
smaller the D-matrices. Smaller D-matrices tends to give a
smaller J

k

. This gives an increased bound (26).
Under one condition, the SWW bound for the continuous,

the discretized and the hybrid models are equal:

Proposition 7 (Equality of bounds). Given the continuous
model (35), the discrete model (45), and the hybrid model
(46). Let all distributions be either continuous or discretized
Gaussian. If

H/�

x

2 KN⇥KN (56)

then the SWW bound of all three models are equal.

Proof: Consider the proof of Theorem 6. First, we address
the prior. We compare the integral with respect to the Lebesque
measure for the continuous model with the integral with respect
to the counting measure for discretized and hybrid models. Let
Hd

k

2 KN⇥KN . If

H
k

= �

x

Hd

k

(57)

then

⇢

G

x0
(h

0,a

+ h
0,b

) = ⇢

G

x0
(�

x

hd

0,a

+�

x

hd

0,b

) .



7

Next we consider the innovation noise. Inspecting Lemma 14
gives

⇢

G

w

c
k

(h
k+1,a

��h
k,a

+ h
k+1,b

��h
k,b

)

= ⇢

G

w

d
k

⇣

�

x

(hd

k+1,a

��hd

k,a

+ hd

k+1,b

��hd

k,b

)

⌘

. (58)

and this leads to D11,c

1

= D11,d

1

(cf. (52)). Additionally,
inspecting Lemma 16 gives

⇢

G

v

k

(�Ch
k+1,a

�Ch
k+1,b

)

= ⇢

G

v

k

(�

x

(�Chd

k+1,a

�Chd

k+1,b

)) . (59)

The Dij

k

-matrices become equal for all three models.

V. ANALYTIC SOLUTION FOR UNIFORM DISTRIBUTIONS

Similar to previous section, we now provide the analytic
SWW bound for multivariate independent uniform densities
Unif {r

k

, s
k

} [34], i.e.

v(x
k

)

:

=

N

Y

`=1

1

[s
k

� r
k

]

`

[x

k

]

`

�[r

k

]

`

,[x

k

]

`

[s

k

]

`

(60)

with indicator function ·. We utilize

⇢

U

x

k

(h
a

,h
b

)

:

=

N

Y

`=1

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1� h

a,`

+h

b,`

&

x

k,`

, h

a,`

� 0 ,

h

b,`

� 0 ,

1 +

h

a,`

+h

b,`

&

x

k,`

, h

a,`

 0 ,

h

b,`

 0 ,

1� h

a,`

&

x

k,`

, h

a,`

> 0 ,

h

b,`

< 0 ,

h

a,`

> �h

b,`

,

1 +

h

b,`

&

x

k,`

, h

a,`

> 0 ,

h

b,`

< 0 ,

h

a,`

 �h

b,`

,

1 +

h

a,`

&

x

k,`

, h

a,`

< 0 ,

h

b,`

> 0 ,

h

a,`

< �h

b,`

,

1� h

b,`

&

x

k,`

, h

a,`

< 0 ,

h

b,`

> 0 ,

h

a,`

� �h

b,`

.

(61)

The width of the support is

&
x

k

= [&

x

k,1 , · · · , &xk,N

]

T

:

=

(

s
k

� r
k

, r
k

, s
k

2 N

,

s
k

� r
k

+ 1 , r
k

, s
k

2 N

.

(62)

Note that discretized uniform random vectors have
x
k

/�

x

,h/�
x

, r
k

/�

x

, s
k

/�

x

2 N whereas discrete
uniform random vectors have x

k

,h, r
k

, s
k

2 N by
definition. Thus, for the i.i.d. continuous uniform distribution
and discretized distributions (x

k

2 N )

r
k

= m
x

k

� 1

/2

p

12diag (C
x

k

) ,

s
k

= m
x

k

+

1

/2

p

12diag (C
x

k

) .

(63)

whereas for the i.i.d. discrete uniform distribution (x
k

2 N )

r
k

= m
x

k

� 1

/21� 1

/2

p

1+ 12diag (C
x

k

) ,

s
k

= m
x

k

� 1

/21+

1

/2

p

1+ 12diag (C
x

k

) .

(64)

Vector m
x

k

denotes the mean of x
k

and 1 the one-vector.
This leads to

&
x

k

=

(

p

12diag (C
x

k

) , x
k

2 N

,

p

1+ 12diag (C
x

k

) , x
k

2 N

.

(65)

Theorem 8 (SWW bound / uniform distributions). Consider
a linear continuous, discrete, or hybrid state-space model. Let
the innovation noise, the measurement noise and the prior be
uniform and independent. Furthermore, let the elements of the
vectors be statistically independent. Then the SWW bound (26)
is given by (44), (66), and (67) on Page 8 where all ⇢ :

= ⇢

U.

Proof: The derivation proceeds as in the proof of Theorem
6 but uses Lemmas 17, 18, and 19 from the appendices.

Corollary 9 (Uniform prior, Gaussian noise). Consider a linear
continuous, discrete, or hybrid state-transition equation. Let
v(x

0

|x�1

)

:

= v(x
0

) be uniform, and both the measurement
and the innovation noise be Gaussian.

Then

⇢

x0
:

= ⇢

U

x0
, ⇢

w0
:

= ⇢

G

w0
(68)

in (66).

Proof: The derivation proceeds as in the proof of Theorem
6 but uses Lemma 18.

The finite support of the uniform distribution induces bounds
on the test-point matrix H

k

:

Proposition 10 (Box conditions). Given a linear state-space
model with multivariate independent uniform noise and prior.
Then for all k � 0

�&
w

k

4 ±h
k,a

± h
k,b

4 &
w

k

, (69a)
�&

w

k

4 ±�h
k,a

±�h
k,b

4 &
w

k

, (69b)
�&

w

k

4 ±�h
k,a

± h
k,b

4 &
w

k

, (69c)
�&

v

k

4 ±Ch
k,a

±Ch
k,b

4 &
v

k

. (69d)

Furthermore,

h
k,a

6= 0, h
k,b

6= 0 . (69e)

Proof: Bounds (69a) to (69d) stem from (67) on Page 8
observing that ⇢U

x

k

2 [0, 1] in (61).
If both h

k,a

! 0 and h
k,b

! 0, the SWW bound collapses
to the SCR bound [13], [24]. For uniform distributions, the
SCR bound does not exist because of the finite support and
this leads to (69e).

The upper bounds are important constraints on H
k

. Assume
that v(w

k

), k 2
0

, has a much larger support than the support
of all other v(w

k

0
), k

0 2
0

\{k}. Then the maximum possible
H

k

0 is defined by the minimum H
k

through (69).

Proposition 11 (Equality of bounds). Given the continuous
model (35), the discrete model (45), and the hybrid model
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⇥

D11

1

⇤

a,b

=

%(�,h
0,a

,h
0,b

)� %(�,�h
0,a

,h
0,b

)

⇢

w0(�h
0,a

,0)⇢
x0(h0,a

,0)⇢
w0(�h

0,b

,0)⇢
x0(h0,b

,0)

%(�,h
0,a

,h
0,b

) = ⇢

w0(�h
0,a

,��h
0,b

)⇢

x0(h0,a

,�h
0,b

) + ⇢

w0(��h
0,a

,�h
0,b

)⇢

x0(�h
0,a

,h
0,b

) (66)

⇥

D11

k+1

⇤

a,b

=

%(�,C,h
k,a

,h
k,b

)� %(�,C,�h
k,a

,h
k,b

)

⇢

w

k

(�h
k,a

,0)⇢
v

k

(Ch
k,a

,0)⇢
w

k�1(hk,a

,0)⇢
w

k

(�h
k,b

,0)⇢
v

k

(Ch
k,b

,0)⇢
w

k�1(hk,b

,0)

%(�,C,h
k,a

,h
k,b

) = ⇢

w

k

(�h
k,a

,��h
k,b

)⇢

v

k

(Ch
k,a

,�Ch
k,b

)⇢

w

k�1(hk,a

,�h
k,b

)

+ ⇢

w

k

(��h
k,a

,�h
k,b

)⇢

v

k

(�Ch
k,a

,Ch
k,b

)⇢

w

k�1(�h
k,a

,h
k,b

)

⇥

D12

k+1

⇤

a,b

= [D21

k+1

]

b,a

=

%(�h
k,a

,h
k+1,b

)� %(�h
k,a

,�h
k+1,b

)

⇢

w

k

(�h
k,a

,0)⇢
w

k

(h
k+1,b

,0)

%(�h
k,a

,h
k+1,b

) = ⇢

w

k

(�h
k,a

,h
k+1,b

) + ⇢

w

k

(��h
k,a

,�h
k+1,b

)

⇥

D22

k+1

⇤

a,b

=

%(C,h
k+1,a

,h
k+1,b

)� %(C,�h
k+1,a

,h
k+1,b

)

⇢

v

k+1(Ch
k+1,a

,0)⇢
w

k

(h
k+1,a

,0)⇢
v

k+1(Ch
k+1,b

,0)⇢
w

k

(h
k+1,b

,0)

%(C,h
k+1,a

,h
k+1,b

) = ⇢

v

k+1(Ch
k+1,a

,�Ch
k+1,b

)⇢

w

k

(h
k+1,a

,�h
k+1,b

)

+ ⇢

v

k+1(�Ch
k+1,a

,Ch
k+1,b

)⇢

w

k

(�h
k+1,a

,h
k+1,b

) (67)

(46). Let the PDs be independently uniformly distributed. Both,
the discrete and the hybrid model are discretized continuous
models and thus x

k

/�

x

, r
k

/�

x

, s
k

/�

x

2 N . If

H
k

/�

x

2 KN⇥KN (70)

then the SWW bound of the discrete, the continuous, and the
hybrid models are equal.

Proof: The proof proceeds as that of Proposition 7 but
uses Lemmas 17 to 19 instead of Lemmas 14 to 16.

VI. ANALYTIC SOLUTION FOR EXPONENTIAL
DISTRIBUTIONS

This section is devoted to the analytic SWW bound for
models with either continuous or discretized multivariate
independent exponential densities Exp {↵

k

} [34], i.e.

v(x
k

)

:

=

N

Y

`=1

(

c

0
`

e

�↵

`

[x

k

]

`

, [x
k

]

`

� 0 ,

0, else .

(71)

Factor c0
`

normalizes the densities and parameter ↵
`

:

= [↵]

`

�
0. If x

k

is continuous, then c

0
`

= ↵

`

. Note that ↵
`

is the inverse
of the mean and standard deviation of [x

k

]

`

. It is convenient
to define

⇢

E

x

k

(h) =

N

Y

`=1

⇢

E,cont

x

k,`

(h

`

)

8

<

:

1 , cont.,
e

↵

`

2
�

x

e

↵

`

2
�

x�1

, disc.,
(72)

⇢

E,cont

x

k,`

(h

`

)

:

=

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

e

�↵

`

2 (h

a,`

+h

b,`

)

, h

a,l

� 0, h

b,l

� 0 ,

e

↵

`

2 (h

a,`

+h

b,`

)

, h

a,l

 0, h

b,l

 0 ,

e

�↵

`

2 (h

a,`

+h

a,`

)

, h

a,l

 0, h

b,l

� 0,

h

a,`

> �h

b,`

,

e

↵

`

2 (h

a,`

+h

b,`

)

, h

a,l

 0, h

b,l

� 0,

h

a,`

 �h

b,`

,

e

�↵

`

2 (h

a,`

�h

b,`

)

, h

a,l

� 0, h

b,l

 0 ,

(73)

with h

`

= [h]
`

, ↵

`

> 0, and h

`

= �

x

h

d

`

for discretized
densities.

Theorem 12 (SWW bound / exponential distributions). Con-
sider a linear continuous, discrete, or hybrid state-transition
equation. Let the noise and the prior be defined by a multi-
variate independent exponential distribution.

Then the SWW bound (26) and (44) for the state vector x
k

is given by (67) on Page 8 where

⇢

:

= ⇢

E

. (74)

Proof: The derivation of the WW lower bound for
Gaussian noise and prior (Theorem 6) leads to the proof:
Starting with (30c), the BD (30j) is computed for the noise
under consideration. A re-cast of the latter one is derived
in (34). Next we use Corollary 5 and get multiplications of
expectations. They compute as in Lemmas 20 and 21. Finally,
we get (67) on Page 8 whereby ⇢

x

= ⇢

E

x

.

Corollary 13 (Prior). Consider a linear continuous, discrete,
or hybrid state-transition equation. Let v(y

0

|x
0

)

:

= v

y0
(y

0

)

and v(x
0

|x�1

)

:

= v(x
0

) be independently exponentially
distributed. Then the SWW bound is given by Theorem 12
except that we utilize D11

1

in (66) with

⇢

x0(h) := ⇢

E

x0
(h) . (75)

Proposition 7 for Gaussian distributions is not applicable
for exponential distributions due to the additional factor
c

0
`

e

↵

`

�
x

(1�h

d
`

)

e

↵

`

�
x�1

and the case differentiation in (72).

VII. PRACTICAL ISSUES

In the sequel, we address practical problems arising. Note
that the test-point matrix H

k

defines a specific SWW bound
of the SWW family.
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A. Computational effort

The non-sequential WW bound (24) computes KN ⇥KN

elements of J
k

, where K 2
+

is the discrete time duration.
This bound is quadratic in time whereas the SWW is constant,
linear, or quadratic:

Consider the sequential WW bound (26) for a linear state-
space model with an analytic solution (51). With (44), it
requires the computation of N⇥N elements in each of the 3K

matrices D11

k+1

, D12

k+1

, and D22

k+1

. The number of operations
to compute each element is independent of K. Hence, 3KN

2

elements are computed and the effort is linear in time.
Moreover, if v(y

k

|x
k

), v(x
k+1

|x
k

), and the test-point ma-
trix H

k

is constant for k > 1, then Dij

k+1

= Dij

k

, i, j 2 {1, 2}.
The computational effort is constant over time.

Consider the general SWW bound (26) with (30), without
closed-form solution ⇢, and a state-space model with discrete
multivariate distributions of finite support [r1, s1]. The expecta-
tion (30j) then simplifies to K+1 sums each N & = N(s�r+1)

summands. At each k = 1, · · · ,K, Equation (30j) is computed
for 4 matrices D01

k+1

, D11

k+1

, D12

k+1

, and D22

k+1

of size N⇥N .
Thus, we obtain 4KN

2⇥(K+1)N & , i.e. the effort is quadratic
in time (cf. [35]).

B. Impact of the test point matrix

The optimal choice of the test-point matrix H
k

maximizes
the WW bound. Even without a general optimal solution to
this maximization, we provide some useful guidelines. To keep
the discussion simple, an one-dimensional linear transition
model is considered with Gaussian, uniform, and exponential
distributions, i.e.

x

k+1

= x

k

+ w

k

, (76a)
y

k

= x

k

+ v

k

, (76b)

with �

2

x0
= 0.4, �

2

w

k

= 0.4, �

2

v

k

= 0.4. For Gaussian
and uniform distributions µ

x0 = µ

w

k

= 0 whereas for the
exponential distributions µ

x0 = 1/�

x0 , µ

w

k

= 1/�

w

k

, and
µ

v

k

= 1/�

v

k

. Fig. 1 plots the SWW bounds and sequential CR
(SCR) bounds vs. h

1,k

at two time steps k = 1 and k = 19

[10].
The SCR bounds only exists for the twice differentiable

Gaussian density. In that case, when h

1,k

! 0, the SWW
bound approaches the SCR bound which is the optimum. For
uniform distributions, the test points h

1,k

are box constrained
by (69). Fig. 1 shows only the positive part of this allowed
interval (0, s] and the point of maximum SWW bound is close
to (s � r)/4. Notice that at k = 19, where the influence of
the prior is small, that the uniform prior / Gaussian noise case
approaches the all-Gaussian case, i.e. the influence of the prior
fades with time. The markers ( ) in Fig. 1 show the optimal
test points h

1,k

obtained numerically. Observe that the high
mode of the exponential density at w

k

= v

k

= x

0

= 0

+

lowers
its bound.

For dimensions greater than one, it is more difficult to obtain
optimal matrices H

k

, k 2
+

. The `th row of the transition
matrix � specifies its dependency on all states. Similarly, the
`th column of the H

k

specifies, which states are considered for
the computation of the `th-state’s SWW bound. This suggests

that the positions of non-zero elements in H
k

should agree
with �T.

The tightness of the SWW bound depends on two contrary
effects of H

k

. For illustration, consider a one-dimensional state-
space models with test point h

k

< 1. On one hand (Effect 1),
small h

k

gives Bayesian Bhattacharyya coefficient ⇡ 1 and
hence D

k

in (51) becomes small. The difference (44) becomes
small, which in turn leads to high J

�1

k

. On the other hand
(Effect 2), h2

k

J

�1

k

in (26) is a quadratic form where h

2

k

occurs,
i.e. it lowers the bound.

For Gaussian distributions, if h
k

# 0, the coefficients go faster
to 1 than h

2

k

J

�1

k

# 0. This is seen by inserting approximation
(55) and (44) into (26) with h

k

= h ! 0, �
w

k

= �

w

, and
�

v

k

= �

v

i.e.

W

k+1

=

h

2

J

k+1

⇡ 1

1

�

2
w

� C

2

�

2
v

+

�

�

4
w

(J

k

/h

2

| {z }

W

k

+�

2
/�

2
w

)

(77)

(cf. (4.43) to (4.45) in [10]). Here, the h

2 cancels, which is not
true for non-Gaussian distributions whose coefficients are not
approximately linear functions of h

2 for h ! 0. Eventually,
Effect 1 is stronger than Effect 2 and hence the bound is tight.

At h = 0+, the derivatives of the Bayesian Bhattacharyya
coefficient for i.i.d exponential, uniform, and Gaussian distri-
butions are ordered,

@

h

⇢

E

�

�

h=0+

= � ↵

2

p
4

= � 1p
4�

2

< @

h

⇢

U

�

�

h=0+

= � 1p
12�

2

< @

h

⇢

G

�

�

h=0

= � 1

4�

2

k

he

� h

2
k

8�2
k

�

�

�

�

�

h=0

= 0 , (78)

where we used h = h

a

+ h

b

and only the BDs main cases that
depend on h. The smaller the derivatives, the more dominant
Effect 2 and the looser the bound (cf. Fig. 1). Thus the SWW
bound for exponential distributions is the loosest (cf. example
in Section VIII).

C. Computation of the prior

Consider a hybrid model (46) where the state xc

0

is modeled
by

xc

0

=

�1

X

`=�K

(�c

)

1�`

�

cd

(xd

`

) +w
`

. (79)

with time horizon K. Function �

cd might be a source in an
acoustic field with the sum representing the evolution of the
corresponding acoustic field during K time steps [5]. The prior
v(xc

0

,xd

0

) is computed by marginalizing the joint probability
density

v(x�K:0

) = v(x�K

)

�1

Y

`=�K

v(x
`+1

|x
`

) . (80)

Fortunately, the explicit computation of the marginal v(x
0

) is
not necessary in our context since we are only interested in the
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0.05
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0.15

0.2
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SCR G/G

G/G
G/G, U/G

U/U

U/G

E/E

k = 1 k = 19

Parameter h
1,k

SW
W

bo
un

d
W

k

Fig. 1: Impact of h1,k on the SWW bound for the state xk (76a) for

Gaussian prior/noise (G/G), uniform prior (U/G) / Gaussian noise,

uniform prior/noise (U/U), and exponential prior/noise (E/E). For

small h1,k, the G/G SWW bounds approach the SCR bounds.

Markers indicate the optimal h1,k for maximum SWW.

lower bound of the mean-square error and not in the PD itself.
Therefore we assume a known PD at time �K, i.e. it carries
over the role of the prior. The SWW bound (26) recursively
computes the WW bound until time 0. Clearly, in this time
interval no measurements influence the bound, i.e.

v(y
`

|x
`

) = v(y
`

) , 8`  0 . (81)

Due to the existence of a density and the independence of the
states, the expectations (39b) reduces to

R

v(y
`

)d�

y

`

= 1 for
` = �K, · · · , 0. This causes ⇢

v

`

= 1 in (51). Briefly speaking,
our approach uses a simplified version of the SWW recursion
instead of the explicit computation of the prior at time zero.

D. Partly-deterministic transition equations

An interesting problem occurs when some parts of the
transition equation (for instance (22a)) are deterministic, i.e. no
noise is added. This results in a singular matrix E

�

x

k

x

T

k

�

. This
causes the Bayesian bounds to become singular (cf. Section
II-B). For SCR bounds, reference [18] performs regularization
by assuming additive noise with small variance. This may meet
most physical problems, so does a discretized physical field.

VIII. EXAMPLE

In this section, the following linear state-space model
demonstrates the bounds derived for different distributions:

x
k+1

=

2

4

1 1 0

0 1 0

0 0 1

3

5x
k

+w
k

, (82a)

y
k

=



1 0 0

0 0 1

�

x
k

+ v
k

. (82b)

The first state [x
k

]

1

depends on itself and the second [x
k

]

2

whereas the others depend only on themselves. Equation (82b)
measures [x

k

]

1

and [x
k

]

3

.

We plot the diagonals of the SWW bound W
k

(26) with
the arbitrary test-point matrix

H
k

=

⇥

h
k,1

h
k,2

h
k,3

⇤

:

=

2

4

hopt 0 0

hopt
/2 hopt 0

0 0 hopt

3

5

. (83)

The computation of Element [W
k

]

ab

utilizes vectors h
k,a

and
h
k,b

for a, b 2 {1, 2, 3}. Although Fig. 2 shows only the
diagonals of W

k

, i.e. the bound on the mean-square error,
update (44) demands for the non-diagonal elements of W

k

.
We discuss four settings for continuous distributions in Fig.

2: the all-Gaussian, the uniform prior / Gaussian noise, the all-
uniform, and the all-exponential case. Their covariance matrices
are C

x0 = C
w

k

= 0.4I and C
v

k

= 0.4I . The Gaussian
and uniform distributions have zero-mean. The means of the
exponential distributions equal their standard deviations.

The all-Gaussian case is plotted in Fig. 2a. The SCR bound
exists and is shown as reference [10]. The test point hopt =

0.01095 and the SWW bound approaches the SCR bound. The
SCR bound is achieved using a Kalman filter. State ` = 3

is observed and has the lowest bound. State ` = 1 depends
additionally on state ` = 2 and hence has a higher bound. State
` = 2 is not directly observed and thus has the highest bound.

The all-uniform case, Fig. 2b is similar to the all-Gaussian
case except that the SWW bounds of the observed states are
close together. The test point hopt = 0.514 is the value of the
tightest SWW bound. The all-exponential case is demonstrated
in Fig. 2c with hopt = 0.47. Fig. 2d shows the SWW bound for
uniform prior and Gaussian noise with hopt = 0.427. Compared
with the all-Gaussian case we only see a difference at time
k = 1 (initial phase).

For the non-Gaussian densities, Figs. 2c-d show the mean-
square error of an importance-sampling-resampling particle
filter with L = 20000 particles, and 1000 realizations [10].
The order of the SWW’s tightness corresponds to the derivative
of the Bayesian Bhattacharyya coefficient (78) at the origin.

We use model (82) and test-point matrix (83) again for
discretized Gaussian and discretized uniform densities. We seek
for settings leading to the same SWW bounds for discretized
and continuous distributions.

Since Gaussian densities have infinite support, using their
discretized versions with quantization step size �

x

= 0.00219

and h

d

opt = 5 give the same SWWs as the continuous cases
(see Fig. 2).

The width (65) of the continuous uniform density computes
to &

x

k

= 2.19⇥1. Let the discrete uniform density have a width
of the support &d

x

k

= 20⇥ 1. Then with (70), the quantization
step size is �

x

= 0.1152 and the covariance matrix of the
discrete uniform distributions are C

x0 = C
w

k

=

1

/12(&

d,2

x

k

�1)I
and C

v

k

=

1

/12(&

d,2

x

k

� 1)I . Now the SWW bound for the
discrete (quantized) uniform distribution Unif

�

�&

d
x

k

/2,

&

d
x

k

/2

 

equals that of the continuous case.
The next example demonstrates a hybrid model with discrete

[x
k

]

2

. Therefore, (82a) becomes
2

4

x

c

1,k+1

x

d

2,k+1

x

c

3,k+1

3

5

=

2

4

1 1 0

0 1 0

0 0 1

3

5

2

4

x

c

1,k

x

d

2,k

x

c

3,k

3

5

+

2

4

w

c

1,k

w

d

2,k

w

c

3,k

3

5

, (84a)
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Fig. 2: The SWW lower bounds for the `th element of xk [cf. (82)] for (a)

continuous/discretized Gaussian prior/noise, (b)

continuous/discretized uniform prior/noise, (c) continuous

exponential prior/noise, and (d) continuous uniform prior /

Gaussian noise. Additionally, in (a) the SCR bound and in (b)-(d)

the mean-square error of a particle filter are shown. Time k = 0
shows the prior error variance.

with

w

d

2,k

⇠ 1

c

00 fw
c
2,k

(w

d

2,k

) , x

d

2,0

⇠ 1

c

000 fx
c
2,0

(x

d

2,0

) . (84b)

Constants c

00 and c

000 are normalizing factors. Equations (84a)
and (82b) form a hybrid model similar to (46). The quantization
interval equals the test point h

opt

= �

x

= 0.01905, and the
continuous distributions are Gaussian as the first example. The
bound for xd

2,k

equals the bound for x
2,k

in (82b) and is shown
in Fig. 2a (cf. Proposition 7).

We discuss and analyze a different example of a hybrid
model with Gaussian and discretized uniform distributions in
[35].

IX. CONCLUSIONS

The family of Weiss-Weinstein bounds enables the use of
hybrid discrete and continuous state-vectors. The use of the
Bayesian Bhattacharyya coefficient gives a general recursion
for the sequential bound. We provide analytic solutions for
Gaussian, uniform, and exponential distributions and their
discrete approximations stemming from discretized states.

The SWW bound depends on the test-point matrix H
k

. An
optimal H

k

gives the tightest bound. The finite support of
uniform densities causes box constrains on H

k

. For Gaussian
distribution, the optimal H

k

! 0 in which it can in certain
cases give the sequential Cramér-Rao bound.

The optimal H
k

for uniform distributions lies near the
middle of the box constraint’s interval. The tightness of the
bound depends on the derivative of the Bayesian Bhattacharyya
distribution in the origin.

The shape of the transition matrix describes the dependency
between states. Thus, it influences the optimum choice of

H
k

that describes the influence of noise on these states. The
SWW bounds for continuous and discretized states are equal
for specific choices of the bound’s test-point matrix H

k

.The
derivations concerning discretized states are applicable for
discretized measurements as well.

Further results are related to practical issues. For linear
state-space models with analytic solutions the computational
effort increases linear with time. Additionally, if the noise
statistics are time-invariant, then the effort is constant. If the
prior density stems from a recursion, it is possible to compute
the SWW bound without explicit prior.

APPENDIX A
GAUSSIAN DENSITIES

The following Lemmas are independent of the discrete or
continuous nature of the densities. The densities are either
Gaussian densities or discretized Gaussian densities p(wd

k

) =

1

c

00 fw
k

(wd

k

) or p(vd

k

) =

1

c

00 fv
k

(vd

k

). The factor c00 normalizes
the PMF.

We use the weighted inner-product hx
1

,x
2

i
C

�1
x

:

=

xT

1

C�1

x

x
2

.

Lemma 14 (Gaussian innovation noise). For a Gaussian
innovation noise, the solution of (39a) is

E

k+1

= ⇢

G

w

k

(h
k+1,a

��h
k,a

+ h
k+1,b

��h
k,b

) (85)

which is independent of x
k

(cf. Lemma 3).

Proof: Let us insert the Gaussian density into (39a), i.e.

E

x

k+1|xk

(

e

� 1
4kxk+1+h

k+1,a��(x

k

+h

k,a

)k2

C

�1
w

k

e

� 1
2kxk+1��x

k

k2

C

�1
w

k

⇥ e

� 1
4kxk+1�h

k+1,b��(x

k

�h

k,b

)k2

C

�1
w

k

)

. (86)

This simplifies to

c

0
w

Z 1

�1
e

�1
/2kx

k+1��x

k

k
C

w

k

⇥e

�1
/4kh

k+1,a��h

k,a

k
C

�1
w

k

�1
/4k�h

k+1,b+�h

k,b

k
C

�1
w

k

⇥e

�1
/2hx

k+1��x

k

,h

k+1,a��h

k,a

�h

k+1,b+�h

k,b

i
C

�1
w

k

d�

x

k+1

(87)

where

c

0
w

:

=

(

(2⇡)

�N/2

det (C
w

k

)

�1
/2

, continuous ,

(2⇡)

�N/2

det (C
w

k

)

�1
/2
c

00
, discretized .

(88)

We substitute

ktk2
C

�1
w

k

:

= kx
k+1

��x
k

k2
C

�1
w

k

+ hx
k+1

��x
k

,h
k+1,a

��h
k,a

� h
k+1,b

+�h
k,b

i
C

�1
w

k

+

1

4

kh
k+1,a

��h
k,a

� h
k+1,b

+�h
k,b

k2
C

�1
w

k

and utilize

c

0
w

Z 1

�1
e

�1
/2ktk2

C

�1
w

k

d�

t

= 1 (89)
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to obtain the final result.

Lemma 15 (Gaussian prior). For a Gaussian prior, the solution
of (39a) is

E

1

= ⇢

G

x0
(h

0,a

+ h
0,b

) . (90)

Proof: The results follows from Lemma 14 where
v(x

0

|x�1

) = v

x0(x0

) and h�1,a

+ h�1,b

= 0.

Lemma 16 (Gaussian measurement noise). For a Gaussian
measurement noise the solution of (39b) is

E

0
k+1

= ⇢

G

v

k+1
(Ch

k+1,a

+Ch
k+1,b

) (91)

which is independently of x
k+1

(cf. Corollary 4).

Proof: Let us insert the Gaussian density into (39b), i.e.

E

y

k+1|xk+1

(

e

� 1
4kyk+1�C(x

k+1+h

k+1,a)k2

C

�1
v

k+1

e

� 1
2kyk+1�Cx

k+1k
C

�1
v

k+1

⇥ e

� 1
4kyk+1�C(x

k+1�h

k+1,b)k2

C

�1
v

k+1

)

. (92)

This simplifies to

c

0
v

Z 1

�1y

e

�1
/2ky

k+1�Cx

k+1k
C

�1
v

k+1

�1
/4kCh

k,a

k
C

�1
v

k+1

�1
/4kCh

k,b

k
C

�1
v

k+1

⇥e

�1
/2hy

k+1�Cx

k+1,Ch

k,a

�Ch

k,b

i
C

�1
v

k+1
d�

y

k+1
(93)

where

c

0
v

:

=

(

(2⇡)

�N/2

det

�

C
v

k+1

��1
/2

, continuous ,

(2⇡)

�N/2

det

�

C
v

k+1

��1
/2
c

00
, discretized .

(94)

We substitute

ktk2
C

�1
v

k+1
:

=

�

�y
k+1

�Cx
k+1

�

�

2

C

�1
v

k+1

�
⌦

y
k+1

�Cx
k+1

,Ch
k+1,a

�Ch
k+1,b

↵

C

�1
v

k+1

+

1

4

kCh
k+1,a

�Ch
k+1,b

k2
C

�1
v

k+1

and utilize

c

0
v

Z 1

�1
e

�1
/2ktk2

C

�1
v

k+1
d�

t

= 1 (95)

to obtain the final result.

APPENDIX B
UNIFORM DENSITIES

The following Lemmas are independent of the discrete or
continuous nature of the densities. The densities are either
continuous or discrete uniform densities.

Lemma 17 (Uniform innovation noise). For an independent
uniform density v(w

k

), the solution of (39a) is

E

k+1

= ⇢

U

w

k

(h
k+1,a

��h
k,a

,h
k+1,b

��h
k,b

) (96)

which is independent of x
k

.

Proof: Let us insert the uniform density into (39a), i.e.

E

x

k+1|xk

n

v

w

k

(x
k+1

+ h
k+1,a

��(x
k

+ h
k,a

))

1
/2

v

w

k

(x
k+1

��x
k

)

⇥ v

w

k

(x
k+1

� h
k+1,b

��(x
k

� h
k,b

))

1
/2

o

(97)

Due to the existence of a density, we have
Z

s

r

v

w

k

(x
k+1

+ h
k+1,a

��(x
k

+ h
k,a

))

1
/2

⇥ v

w

k

(x
k+1

� h
k+1,b

��(x
k

� h
k,b

))

1
/2
d�

x

k+1

=

Z

s

k

r

k

N

Y

`=1

x

k+1+h

k+1,a��(x

k

+h

k,a

)2[r

k

,s

k

]

[&
w

k

]

`

⇥
x

k+1�h

k+1,b��(x

k

�h

k,b

)2[r

k

,s

k

]

d�

x

k

(98)

and get (99) for all h
k+1,a,`

�[�h
k,a

]

`

and h

k+1,b,`

�[�h
k,b

]

`

so that the terms are in [0, 1].

Lemma 18 (Uniform prior). For an independent uniform
density v(w

0

), the solution of (39a) is

E

1

= ⇢

U

w

k

(h
0,a

,h
0,b

) . (100)

Proof: The results follows from Lemma 17 where
v(x

0

|x�1

) = v

x0(x0

) and h�1,a

= h�1,b

= 0.

Lemma 19 (Uniform measurement noise). For an independent
uniform density v(v

k

), the solution of (39b) is

E

0
k+1

= ⇢

U

v

k

(Ch
k+1,a

,Ch
k+1,b

) (101)

which is independent of x
k+1

.

Proof: We insert the uniform density into (39b) , i.e.

E

y

k+1|xk+1

n

v

v

k

(y
k+1

�C(x
k+1

+ h
k+1,a

))

1
/2

v

v

k

(y
k+1

�Cx
k+1

)

(102)

⇥ v

v

k

(y
k+1

�C(x
k+1

� h
k+1,b

))

1
/2

o

,

Due to the existence of a density, we have
Z

s

r

v

v

k+1(yk+1

�C(x
k+1

+ h
k+1,a

))

1
/2

⇥ v

v

k+1(yk+1

�C(x
k+1

� h
k+1,b

))

1
/2
d�

y

k+1

=

Z

s

k+1

r

k+1

N

Y

`=1

y

k+1�C(x

k

+h

k+1,a)2[r

k+1,sk+1]

[&
v

k

]

`

⇥
y

k+1�C(x

k+1�h

k+1,b)2[r

k+1,sk+1]
d�

y

k+1
(103)

and get (104) for all [Ch
k+1,a

]

`

and [Ch
k+1,b

]

`

so that the
terms are in [0, 1].

APPENDIX C
EXPONENTIAL DENSITIES

We assume both exponential densities and discretized
exponential densities p(wd

k

) =

1

c

00 fw
k

(wd

k

) and p(vd

k

) =

1

c

00 fv
k

(vd

k

). The factor c00 = c

00
1

· · · c00
N

normalizes the PMF.

Lemma 20 (Innovation noise). Given a multivariate indepen-
dent exponential density v(w

k

), the solution of (39a) is

E

k+1

= ⇢

E

w

k

(h
k+1,a

��h
k,a

,h
k+1,b

��h
k,b

) (105)
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>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1� |h
k+1,a,`

�[�h

k,a

]

`

+h

k+1,b,`�[�h

k,b

]

`

|
&

w

k,`

, h

k+1,a,`

� [�h
k,a

]

`

� 0 ,

h

k+1,b,`

� [�h
k,b

]

`

� 0 ,

1 +

|h
k+1,a,`

�[�h

k,a

]

`

+h

k+1,b,`�[�h

k,b

]

`

|
&

w

k,`

, h

k+1,a,`

� [�h
k,a

]

`

 0 ,

h

k+1,b,`

� [�h
k,b

]

`

 0 ,

1� h

k+1,a,`

�[�h

k,a

]

`

&

w

k,`

, h

k+1,a,`

� [�h
k,a

]

`

> 0 ,

h

k+1,b,`

� [�h
k,b

]

`

< 0 ,

h

k+1,a,`

� [�h
k,a

]

`

> �h

k+1,b,`

+ [�h
k,b

]

`

,

1 +

h

k+1,b,`�[�h

k,b

]

`

&

w

k,`

, h

k+1,a,`

� [�h
k,a

]

`

> 0 ,

h

k+1,b,`

� [�h
k,b

]

`

< 0 ,

h

k+1,a,`

� [�h
k,a

]

`

 �h

k+1,b,`

+ [�h
k,b

]

`

,

1 +

h

k+1,a,`

�[�h

k,a

]

`

&

w

k,`

, h

k+1,a,`

� [�h
k,a

]

`

< 0 ,

h

k+1,b,`

� [�h
k,b

]

`

> 0 ,

h

k+1,a,`

� [�h
k,a

]

`

< �h

k+1,b,`

+ [�h
k,b

]

`

,

1� h

k+1,b,`�[�h

k,b

]

`

&

w

k,`

, h

k+1,a,`

� [�h
k,a

]

`

< 0 ,

h

k+1,b,`

� [�h
k,b

]

`

> 0 ,

h

k+1,a,`

� [�h
k,a

]

`

� �h

k+1,b,`

+ [�h
k,b

]

`

,

(99)

which is independent of x
k

.

Proof: Let us insert the density into (39a) and substitute
w :

= x
k+1

+�h
k,b

, i.e.
Z

X
k+1\v

w

k

(x

k+1�x

k

)>0

v

w

k

(x
k+1

+ h
k+1,a

��(x
k

+ h
k,a

))

1
/2

⇥ v

w

k

(x
k+1

� h
k+1,b

��(x
k

� h
k,b

))

1
/2
d�

x

k+1

=

N

Y

`=1

Z

v(w

`

)>0

c

0
`

e

�↵

`

2 (w

`

+h

a,`

�h

b,`

)

⇥
w

`

+h

a,`

2[0,1) w

`

�h

b,`

2[0,1)

d�

w

`

(106)

where

c

0
`

=

(

↵

`

, v(w

`

) cont. ,
↵

`

c

00
`

, v(w

`

) discr. ,
(107)

normalizes the densities.
We further get (108) at Page 14.
For discrete w

`

, we define h

`

= �

x

h

d

`

, h

d

`

2 . Thus,
Z 1

h

`

e

�↵

`

w

`

d�

w

`

=

1
X

w

0
`

=h

d
`

e

�↵

`

�

x

w

0
`

=

e

↵

`

�

x

(1�h

d
`

)

e

↵

`

�

x � 1

when ↵

`

�

x

> 0 . (109)

We further get (110) at Page 14. Observe that for all `

discrete =

e

↵

`

�

x

e

↵

`

�

x � 1

continuous . (111)

Lemma 21 (Measurement noise). Given a multivariate inde-
pendent exponential measurement noise v(v

k

), the solution of

(39b) is

E

0
k+1

= ⇢

E

v

k

(Ch
k+1,a

,Ch
k+1,b

) (112)

which is independent of x
k+1

.

Proof: The proof is similar to that of Lemma 20 except
h
k+1,a

= h
k+1,b

:

= 0 and the substitution of �h
k,a

by
Ch

k+1,a

, �h
k,b

by Ch
k+1,b

and w
k

by v
k+1

.
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`
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`
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